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Abstract: We discuss flavor-mixing probabilities and flavor ratios of high energy astro-

physical neutrinos. In the first part of this paper, we expand the neutrino flavor-fluxes

in terms of the small parameters Ue3 and π/4 − θ23, and show that there are universal

first and second order corrections. The second order term can exceed the first order term,

and so should be included in any analytic study. We also investigate the probabilities and

ratios after a further expansion around the tribimaximal value of sin2 θ12 = 1/3. In the

second part of the paper, we discuss implications of deviations of initial flavor ratios from

the usually assumed, idealized flavor compositions for pion, muon-damped, and neutron

beam sources, viz., (νe : νµ : ντ ) = (1 : 2 : 0), (0 : 1 : 0), and (1 : 0 : 0), respectively.

We show that even small deviations have significant consequences for the observed flavor

ratios at Earth. If initial flavor deviations are not taken into account in analyses, then false

inferences for the values in the PMNS matrix elements (angles and phase) may result.
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1. Introduction

There has been recently much discussion on the flavor mixing of high energy astrophysical

neutrinos [1 – 15]. Neutrino mixing modifies the initial flavor distribution of fluxes Φ0
e :

Φ0
µ : Φ0

τ in calculable ways. In terrestrial neutrino telescopes such as IceCube [16] or

KM3Net [17], one can measure neutrino flavor ratios [18] and thereby obtain information

on the neutrino parameters and/or the sources.1 There are two essential ingredients to

such analyses. One is the initial flavor composition which depends on the nature of the

production process at the source. The other is the neutrino mixing scheme, in particular

the values of the parameters governing neutrino mixing. The latter plays the role of altering

the flavor mix from the original due to non-trivial lepton mixing. We will discuss in this

paper precision issues for both these aspects.

1In principle, more exotic neutrino properties such as neutrino decay, Pseudo-Dirac structure, magnetic

moments, interaction with dark energy, or breakdown of fundamental symmetries could also be studied [19 –

24].
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The current best-fit values as well as the allowed 1σ and 3σ ranges of the oscillation

parameters are [25]:

sin2 θ12 = 0.32+0.02 , 0.08
−0.02 , 0.06 ,

sin2 θ23 = 0.45+0.07 , 0.20
−0.07 , 0.13 , (1.1)

|Ue3|2 < 0.02 (0.04) .

The CP phase is completely unknown and has a range between zero and 2π. The current

information on the mixing parameters [26] therefore suggests that θ13 and the deviation

from maximal atmospheric neutrino mixing are small parameters and therefore to ex-

pand the formulae in terms of them. This is quite useful in order to obtain an analytical

understanding of basically all phenomenological problems of interest. Furthermore, the

deviation from the value sin2 θ12 = 1
3 is also small and thereby a third small expansion

parameter is introduced. An idealized description for the leptonic mixing, or Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix U , which is nevertheless perfectly compatible with

all experimental information is tribimaximal mixing [27]

U ≃ UTBM =
1√
6







2
√

2 0

−1
√

2 −
√

3

−1
√

2
√

3






. (1.2)

The transition probabilities of astrophysical neutrinos are functions of the elements of U ,

whose usual PDG parameterization is given in the appendix. Expanding these probabilities

in terms of the small parameters motivated by the observed oscillation phenomenology is

one of the purposes of this paper. Previously, expansions in terms of |Ue3| and π/4 − θ23

have been discussed. In this case, we will show here first that in addition to the known

universal first order correction [8, 11] there is a second order universal correction which can

exceed the first order one and has to be included in analytical studies. Furthermore, by

expanding the probabilities in terms of the deviation from sin2 θ12 = 1
3 we find extremely

compact expressions.

In what concerns the initial flavor mix at the source, there are three simple and — as

we will make clear in this paper — idealized possibilities:

• The most conventional one is neutrino emission from purely hadronic processes, such

as p + p → π∓ → µ∓+
(−)
νµ→ e∓+

(−)
νe +νµ + νµ, in which the initial neutrino flavor

mix is identical to the one in atmospheric neutrinos:

Φ0
e : Φ0

µ : Φ0
τ = 1 : 2 : 0 . (1.3)

If the dominant decay process is p + γ → π+ + X then the flavor mix is still 1 : 2 : 0,

however the initial νe flux is absent. This can in principle be checked by taking

advantage of the Glashow resonance reaction νe + e− → W− [1, 28, 3], which occurs

at an incident νe energy of 6.3 PeV.

• The muons may lose energy so that the
(−)
νe flux is depleted at the energies of interest.

This can happen in a variety of ways [29 – 34, 14]; e.g., muons can lose energy in
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strong magnetic fields, or get absorbed in matter. In these cases the initial flavor

composition is simply

Φ0
e : Φ0

µ : Φ0
τ = 0 : 1 : 0 (1.4)

without any electron or tau neutrinos. Specific models have been discussed. In

general, one expects that any pion source will have a transition to a muon-damped

composition, with the transition energy depending on the source properties. Qualita-

tively, muon damping occurs when the muon’s energy-loss length ∼ E
dE/dx is shorter

than its decay length (E/mµ) cτ0, i.e., when dE/dx >∼ cτ0/mµ.

• The third case is that of sources which emit dominantly neutrons. These neutrons

originate in the photo-dissociation of heavy nuclei. The decays of the neutrons give

rise to an initial pure “β-beam” of νe [35], i.e.,

Φ0
e : Φ0

µ : Φ0
τ = 1 : 0 : 0 , (1.5)

with no νe or any muon or tau neutrinos.

One other expected source of both pion-decay neutrinos and neutron-decay neutrinos,

in separated energy regions [36], is the GZK nucleonic reaction pCR+γCMB → ∆+ → n+π+.

The subsequent pion and muon decays produce neutrinos with energies about 20 times (i.e.,

mπ/mN ×1/4) below EGZK ∼ 5×1019 eV, while neutron decay produces νe’s with energies

about a thousand times (i.e., β-decay Q-value/mn) below EGZK.

We will emphasize in the present work that the above three flavor mixes in

eqs. (1.3), (1.4), (1.5) are idealizations. Realistically, one should expect deviations from

these simple flux compositions. These deviations should be taken into account in analyses

to avoid incorrect conclusions about the violation/conservation of CP, the octant of θ23, or

the magnitude of |Ue3|. We shall outline the need for care with several examples.

This paper is built up as follows. In section 2 we discuss an expansion of the mixing

probabilities and flux ratios up to second order (i) in the small parameters sin2 θ23 − 1
2 and

|Ue3|, and eventually, (ii) in the small parameter sin2 θ12− 1
3 . In section 3 we assess the valid-

ity of the idealized and often used initial flavor compositions given in eqs. (1.3), (1.4), (1.5).

We illustrate the effects of impure neutrino mixes with various examples. We sum up and

conclude in section 4.

2. Mixing probabilities and flux ratios up to second order

We discuss in this section approximate formulae for the mixing probabilities and flux

ratios, and general properties of the relevant flux ratios. For illustration and insight, we

will expand formulas in terms of small parameters, but we use the exact expressions for all

plots of flux ratios presented in this paper.

An expansion up to second order in the small parameters2 reveals universal correction

terms [37]. We will expand first in terms of the two parameters sin2 θ23− 1
2 and |Ue3|, related

2The importance of second order terms has also been mentioned in ref. [12].
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to breaking of the νµ ↔ ντ symmetry [38]. To reveal the dependence on these two param-

eters, it is sometimes useful to fix the solar neutrino mixing with the phenomenologically

valid relation sin2 θ12 = 1
3 .

2.1 Mixing probabilities

2.1.1 Expansion in terms of |Ue3| and ǫ ≡ π

4
− θ23

The distances to most high energy neutrino sources are quite large compared to oscillation

lengths λjk = 4π E/∆m2
jk, where ∆m2

jk = m2
j − m2

k is the mass-squared difference and

E the neutrino energy. Even for energies as high as the GZK-cutoff ∼ 5 × 1019 eV, this

is so. Consequently, the terms involving the mass-squared differences in the oscillation

probabilities are effectively averaged out; oscillation probabilities are reduced to mixing

probabilities. The να ↔ νβ mixing probabilities are

Pαβ =
∑

i

|Uαi|2 |Uβi|2 . (2.1)

Starting from an initial flux composition Φ0
e : Φ0

µ : Φ0
τ , the measurable neutrino flux at

Earth is given by

Φα =
∑

β

Pαβ Φ0
β . (2.2)

If tribimaximal mixing (given in eq. (1.2)) is assumed, then the flavor-propagation proba-

bilities are simply

PTBM =
1

18







10 4 4

4 7 7

4 7 7






. (2.3)

The flavor ordering for both column and row indices of this symmetric matrix are (e, µ, τ).

Neglecting the small parameters π/4−θ23 and θ13, the probabilities Pαβ (and therefore

the observable flux ratios) are functions solely of the solar neutrino mixing angle. The

exact expressions for the mixing probabilities (given in the appendix) are fourth order

polynomials in the sin θij. It is therefore more useful to expand the formulae in terms of

small parameters and truncate after the quadratic terms. We will first expand in terms of

|Ue3| and ǫ ≡ π

4
− θ23 =

1

2
− sin2 θ23 + O(ǫ3) . (2.4)

The explicit PDG parametrization of the PMNS matrix is given in the appendix. Writing

the result in matrix form yields:

P ≡







Pee Peµ Peτ

Peµ Pµµ Pµτ

Peτ Pµτ Pττ






≃







1 − 2 c2
12 s2

12 c2
12 s2

12 c2
12 s2

12

c2
12 s2

12
1
2 (1 − c2

12 s2
12)

1
2 (1 − c2

12 s2
12)

c2
12 s2

12
1
2 (1 − c2

12 s2
12)

1
2 (1 − c2

12 s2
12)






(2.5)

−1

2
(1 − 2 c2

12 s2
12) |Ue3|2







4 −2 −2

−2 1 1

−2 1 1






+ ∆







0 1 −1

1 −1 0

−1 0 1






+

1

2
∆

2







0 0 0

0 1 −1

0 −1 1






,
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As it must, every row and every column sums to 1. The correction linear in |Ue3| and ǫ is

given by [8, 11]

∆ ≡ 1

4
sin 4θ12 cos δ |Ue3| +

1

2
sin2 2θ12 ǫ , (2.6)

and the correction quadratic in |Ue3| and ǫ is

∆
2 ≡ sin2 2θ12 cos2 δ |Ue3|2 + 4 (1 − cos2 θ12 sin2 θ12) ǫ2 − sin 4θ12 cos δ |Ue3| ǫ (2.7)

= (sin 2θ12 cos δ |Ue3| − ǫ cos 2θ12)
2 + 3 ǫ2 .

The latter is a new result, as is the observation that the universal second order correction ∆
2

is positive semidefinite. With the current 1σ and (3σ) ranges of the oscillation parameters,

one finds the following ranges for ∆ and ∆
2
:

(−0.104) − 0.043 ≤ ∆ ≤ 0.069 (0.117) , and ∆
2 ≤ 0.061 (0.179) . (2.8)

It is seen that the second order correction can exceed the first order correction. Conse-

quently, the first order correction to the flux ratios alone is not sufficient to accurately

describe the phenomenology. The second order correction needs inclusion in analytical

studies. The reason for the large second order term are the sizable numerical coefficients,

especially the one in front of ǫ2 (we have checked that the higher order terms have smaller

coefficients).

Explicitly, the individual mixing probabilities are

Pee ≃ (1 − 2 c2
12 s2

12)(1 − 2 |Ue3|2) ,

Peµ ≃ c2
12 s2

12 + ∆ + (1 − 2 c2
12 s2

12) |Ue3|2 ,

Peτ ≃ c2
12 s2

12 − ∆ + (1 − 2 c2
12 s2

12) |Ue3|2 ,

Pµµ ≃ 1

2

(

1 − c2
12 s2

12

)

− ∆ +
1

2
∆

2 − 1

2
(1 − 2 c2

12 s2
12) |Ue3|2 , (2.9)

Pµτ ≃ 1

2

(

1 − c2
12 s2

12

)

− 1

2
∆

2 − 1

2
(1 − 2 c2

12 s2
12) |Ue3|2 ,

Pττ ≃ 1

2

(

1 − c2
12 s2

12

)

+ ∆ +
1

2
∆

2 − 1

2
(1 − 2 c2

12 s2
12) |Ue3|2 .

This may be compared with the same in the case of exact tribimaximal mixing, given in

eq. (2.3). The explicit terms depending on |Ue3|2 are small, because the maximal value of

(1 − 2 c2
12 s2

12) |Ue3|2 is 0.011 (0.031) at 1σ (3σ), which is well below the maximal values

of |∆| and ∆
2
. In addition, for the initial flavor composition of Φ0

e : Φ0
µ : Φ0

τ = 1 : 2 : 0,

the terms with explicit |Ue3|2 cancel in the fluxes. Consequently, the first and second

order corrections ∆ and ∆
2

attain a universal status. Pee and Pµτ receive only quadratic

corrections, where the correction to Pee depends only3 on θ13 and not on δ or θ23. Note

that the universal second order term shows up only in Pµµ, Pµτ and Pττ , i.e., in the µ–τ

sector. This will be of interest later when we discuss neutron beam sources, in which these

probabilities, and therefore ∆
2
, do not show up in the flux ratios.

3This remains true for Pee even when oscillations do not average out.
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Inserting the tribimaximal value sin2 θ12 = 1
3 in the expressions for ∆ and ∆

2
gives a

more illustrative result. We define the resulting universal corrections as

∆TBM =
1

9

(√
2 cos δ |Ue3| + 4 ǫ

)

, (2.10)

∆
2
TBM =

4

9

(

2 cos2 δ |Ue3|2 + 7 ǫ2 −
√

2 cos δ |Ue3| ǫ
)

.

If for instance θ13 = 0 and |ǫ| is larger than 1/7, then ∆
2
TBM exceeds |∆TBM|. Note

that ∆ = ∆TBM plus quadratic terms and that ∆
2

= ∆
2
TBM plus cubic terms. Hence,

the ranges of ∆TBM and ∆
2
TBM are changed little from the ranges of ∆ and ∆

2
given in

eqs. (2.8).

It is also interesting to consider the allowed range of the second order correction ∆
2

in the case of a vanishing first order correction ∆. We find that, at 1σ and (3σ),

if ∆ = 0 , then ∆
2 ≤ 0.029 (0.093) . (2.11)

In particular if the oscillation parameters lie outside their current 1σ ranges, then the

mixing probabilities and flux ratios can deviate up to ten percent from their tribimaximal

values even if the first order correction vanishes.

Note that in the definition of ∆ in eq. (2.6), the factor in front of 1
2−sin2 θ23 is larger and

has a smaller range than the factor in front of |Ue3| cos δ. To be precise, for the allowed 3σ

range of solar neutrino mixing, 1
4 sin 4θ12 ranges from 0.12 to 0.21, whereas 1

2 sin2 2θ12 ranges

from 0.38 to 0.48. Consequently, the sensitivity to deviations from maximal atmospheric

neutrino mixing is better than the sensitivity to deviations from |Ue3| = 0. The latter is also

mitigated by the dependence on the unknown CP phase δ. Comparing ∆
2

from eq. (2.7)

with the first order parameter ∆, we note that the factor in front of ǫ2 in ∆
2

is larger than

the one in front of ǫ in ∆. Also in ∆
2
, the factor in front of ǫ2 has a smaller range than the

one in front of |Ue3|2: sin2 2θ12 lies between 0.75 and 0.64, whereas 4 (1 − cos2 θ12 sin2 θ12)

ranges from 3.06 to 3.25, when the allowed 3σ values of θ12 are inserted. Again, sensitivity

to deviations from maximal atmospheric neutrino mixing is favored over sensitivity to |Ue3|.
In figure 1 we show the minimal and maximal allowed values of ∆ and ∆

2
as a function

of the neutrino mixing parameters. There is almost no dependence on θ12. The strongest

dependence is on θ23. The statistically weak preference for sin2 θ23 = 0.45 would mean for

θ13 = 0 that ∆ ≃ 0.02 is positive and ∆
2 ≃ 0.008. We show in figure 2 the distribution of

|Ue3| cos δ against sin2 θ23 for several values of ∆, where we allow all mixing angles to vary

in their allowed 3σ ranges. We also indicate the 1σ ranges for sin2 θ23 and for |Ue3| cos δ if

δ = 0, π/4 and π/3. Figure 3 shows the same for ∆
2
. Only if ǫ = |Ue3| cos δ = 0 can ∆

2

vanish exactly. The first order correction ∆ may also vanish, if [8, 11]

|Ue3| cos δ =

(

sin2 θ23 −
1

2

)

tan 2θ12 . (2.12)

The tribimaximal value of tan 2θ12 is 2
√

2.
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Figure 1: The minimal and maximal allowed values of the universal first and second order param-

eters ∆ and ∆
2

as a function of the neutrino mixing parameters. The observables not specified in

the horizontal axis were varied over their currently allowed 1σ (top) and 3σ (bottom) ranges.

2.1.2 Expansion in terms of |Ue3|, ǫ ≡ π

4
− θ23, and ǫ

′ ≡ sin2
θ12 − 1

3

We can simplify the expressions even more when we introduce a third small parameter,
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Figure 2: Distribution of |Ue3| cos δ against sin2 θ23 if ∆ takes certain indicated values. Indicated

also is the allowed 1σ range of θ23 and of |Ue3| cos δ for (from top to bottom above zero) δ = 0,

δ = π/4 and δ = π/3. The value δ = π/2 means |Ue3| cos δ = 0.

taking advantage of the closeness of sin2 θ12 to 1
3 . Let us define4

ǫ′ ≡ arcsin

√

1

3
− θ12 =

3

2
√

2

(

1

3
− sin2 θ12

)

+ O(ǫ′2) . (2.13)

4A related expansion can be found in ref. [37].
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Figure 3: Distribution of |Ue3| cos δ against sin2 θ23 if ∆
2

takes certain indicated values. Indicated

also is the allowed 1σ range of θ23 and of |Ue3| cos δ for (from top to bottom above zero) δ = 0,

δ = π/4 and δ = π/3. The value δ = π/2 means |Ue3| cos δ = 0.

The best-fit value of sin2 θ12 = 0.32 corresponds to ǫ′ = 0.0142. From the previous sub-

section it is not difficult to obtain the elements of the flavor-propagation matrix P . They

are [37]

Pee =
1

18
(10 + 4A) , Peµ =

1

18
(4 − 2A + B) , Peτ =

1

18
(4 − 2A − B) ,

(2.14)

Pµµ =
1

18
(7 + A − B + C) , Pµτ =

1

18
(7 + A − C) , Pττ =

1

18
(7 + A + B + C) ,
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where

A = 2
√

2 ǫ′ + 7 ǫ′2 − 5 |Ue3|2 ,

B = 2
(√

2 |Ue3| cos δ + 4 ǫ − 4
√

2 ǫ ǫ′ + 7 ǫ′ |Ue3| cos δ
)

, (2.15)

C = 4
(

2 |Ue3|2 cos2 δ + 7 ǫ2 −
√

2 ǫ |Ue3| cos δ
)

.

Note that C = 9∆
2
TBM, the latter being previously defined in eq. (2.10). If θ23 is maximal

and |Ue3| cos δ vanishes, then B = C = 0 and only A 6= 0, unless in addition sin2 θ12 = 1
3 .

Just as with ∆
2
, the correction factor C is positive semi-definite and appears exclusively

in the µ–τ sector. The probability Pee receives contributions only from A, whereas Pµτ is

not corrected by B. Deviations from sin2 θ12 = 1
3 show up mainly in A.

At 1σ and (3σ), we obtain the ranges of these (A, B, C) parameters. The ranges are

(−0.418) − 0.126 ≤ A ≤ 0.117 (0.284) , (2.16)

(−1.956) − 0.778 ≤ B ≤ 1.255 (2.177) ,

0 ≤ C ≤ 0.465 (1.356) .

The tribimaximal values for these parameters are zero.

Both expansions, one in terms of (∆, ∆
2
) and the other in terms of (A, B, C), are

useful. To disentangle the dependence on θ12 from the dependences on |Ue3| and θ23−π/4,

the expansion defined by (∆, ∆
2
) may be more helpful; the (∆, ∆

2
) expansion has the full

dependence on θ12 included in it. On the other hand, the range of ǫ′ is smaller than the

range of ǫ and |Ue3|. Therefore, to a good approximation one may set sin2 θ12 to 1
3 . Below,

we concentrate on the dependences on |Ue3| and ǫ ≡ π/4 − θ23.

2.2 Flavor ratios

With the help of the probabilities in eq. (2.9) and a given initial flavor composition Φ0
e : Φ0

µ :

Φ0
τ it is easy to obtain approximate formulae for flux compositions or ratios. We will focus

here on the ratio of muon neutrinos to the total flux Φtot, and on the ratio of νe to ντ [18, 39]:

T ≡ Φµ

Φtot
and R ≡ Φe

Φτ
. (2.17)

Muon neutrinos with energies >∼ 102 GeV can be identified via muons emerging from the

shower. Electromagnetic showers from νe charged current reactions may be identifiable.

At energies >∼ 106 GeV, ντ can be identified by double-bang or lollipop signatures.

Sometimes the ratio Φµ/(Φe + Φτ ) is discussed in the literature. It is trivially related to

our ratio T , being equal to T/(1 − T ).

In the 6.3 PeV energy region, the νe flux becomes easy to measure, due to the enhanced

rate of the “Glashow resonance” [1, 3, 28]. The reaction is νe + e− → W−. Thus we also

define the ratio

Q ≡ Φe

Φtot
, (2.18)

where Φe is the νe flux.

In the rest of this paper, we will focus mostly on the T and R ratios. With the formulas

we have given in section 2.1, all other flux ratios are easy to obtain.

– 10 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
5

2.2.1 Pion sources

Pion-sources present a initial neutrino flux ratios Φ0
e : Φ0

µ : Φ0
τ = 1 : 2 : 0. It holds

in this case that at Earth, Φe = 1
3 Φtot (Pee + 2Peµ), Φµ = 1

3 Φtot (Peµ + 2Pµµ), and

Φτ = 1
3 Φtot (Peτ + 2Pµτ ), These simplify to

pion sources: (Φe : Φµ : Φτ ) =
(

1 + 2∆ : 1 − ∆ + ∆
2

: 1 − ∆ − ∆
2
)

. (2.19)

Here we have used the (∆, ∆
2
) expansion. The single (and small) terms containing only

|Ue3|2, which are present besides ∆ and ∆
2

in eq. (2.9), drop out of these expressions. If

one uses the (A, B, C) expansion, which includes ǫ′ as well, then one finds that A drops

out of the ratios, to leave:

pion sources: (Φe : Φµ : Φτ ) =

(

1 +
B

9
: 1 − B

18
+

C

9
: 1 − B

18
− C

9

)

. (2.20)

These relations illustrate that deviations from the “canonical” 1 : 1 : 1 result are of order

(∆, ∆
2
), or ( 1

10 (B, C)) and can therefore exceed 10%. Another result from these formulae

is that the ratio
Φµ

Φτ
≃ 1 + 2∆

2
= 1 +

2

9
C (2.21)

is always larger than or equal to one. We checked that this is also true for the full expression.

Hence, there cannot be more ντ than νµ at Earth if the initial flux composition is 1 : 2 : 0.

Reorganizing the results in eq. (2.19), we get the ratios of our interest. They are5

T ≃ 1

3
(1 − ∆ + ∆

2
) and R ≃ 1 + 3∆ + ∆

2
+ 3∆2 . (2.22)

Numerically, using the full expressions, T lies between 0.32 and 0.39, while R ranges from

0.82 to 1.48. Therefore, deviations of more than 15% for T , and almost 50% for R can be

expected.

The ratio of electron neutrinos to all other neutrino flavors is interesting in that it

receives no quadratic corrections. The ratio is

Φe

Φtot
≃ 1

3
(1 + 2∆) . (2.23)

The tribimaximal values of the ratios T , R, and Φe/Φtot are clearly 1
3 , 1, and 1

3 , respectively.

2.2.2 Muon-damped sources

The fluxes at Earth for muon-damped sources are found to be

muon-damped sources: (Φe : Φµ : Φτ ) = (Peµ : Pµµ : Pµτ )
TBM
= (4 : 7 : 7)

−→ (4 − 2A + B : 7 + A − B + C : 7 + A − C) ,
(2.24)

5The expression for R does not exactly follow from eq. (2.9), but is obtained by evaluating and expanding

the full fraction. The difference is however negligible.
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where we first insert the tribimaximal mixing values, and then show the result with cor-

rections. From these, we get the ratios of interest:

T = Pµµ ≃ 1

18
(7 + A − B + C) ≃ 7

18
− ∆ +

1

2
∆

2
, (2.25)

R =
Peµ

Pµτ
≃ 4 − 2A + B

7 + A − C
≃ 1

7

(

4 + 18∆ +
36

7
∆

2
)

,

where we have inserted on the far right-hand sides, the value sin2 θ12 = 1
3 . The quantities ∆

and ∆
2

are therefore the quantities ∆TBM and ∆
2
TBM defined earlier in eq. (2.10). However,

as mentioned below eq. (2.10), the differences are small. For exact tribimaximal mixing we

have T = 7
18 and R = 4

7 . Refs. [4] and [13] have proposed to use these sources to probe θ23

and the CP phase, respectively.

2.2.3 Neutron beam sources

Neutron beam sources have an initial 1 : 0 : 0 flavor mix. We find for the flavor decompo-

sition at Earth,

neutron beam: (Φe : Φµ : Φτ ) = (Pee : Peµ : Peτ )
TBM
= (5 : 2 : 2)

−→ (10 + 4A : 4 − 2A + B : 4 − 2A − B) .
(2.26)

Again, we give results for exact tribimaximal mixing, followed by the corrected expression.

From these, we get the flavor ratios of interest:

T = Peµ ≃ 1

18
(4 − 2A + B) ≃ c2

12 s2
12 + ∆ ≃ 2

9
+ ∆ , (2.27)

R =
Pee

Peτ
≃ 10 + 4A

4 − 2A − B
≃ 1 − 2 c2

12 s2
12

c2
12 s2

12

(

1 +
∆

c2
12 s2

12

)

≃ 5

2

(

1 +
9

2
∆

)

.

Tribimaximal values are 2
9 and 5

2 , respectively. Note that C, or alternatively ∆
2
, which

show up only in the µ–τ sector, do not appear in neutron beam formulae. The ratio of νe

to the total flux, initially unity, is simply Q = Pee
TBM
= 5

9 → (10 + 4A)/18.

2.2.4 Summarizing the flavor ratios

We summarize the situation for the flux ratios T and R. Tables 1, 2 and 3 show their

ranges for the currently allowed 3σ ranges of the oscillation parameters. In the case of

exact tribimaximal mixing, T is 1/3, 7/18 ≃ 0.39, and 2/9 ≃ 0.22 for pion, muon-damped

and neutron sources, respectively. If future neutrino oscillation experiments show that

deviations from tribimaximal are small, then measurements of T with ≃ 10% precision

would distinguish between pion and muon-damped sources. However, a low value of T ∼
2/9 would clearly indicate neutron sources.6 On the other hand, currently allowed nonzero

values of |Ue3|, ǫ or ǫ′ lead to a possible overlap of the ratio T for all sources. This is shown

in figure 4, where we display the allowed ranges of T for the 3σ ranges of the oscillation

parameters. The range at the very left side of the plot is what is relevant to this discussion

(the relevance of the rest of the plot concerns flux uncertainties, which we introduce in
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general case TBM

composition T = Φµ/Φtot R = Φe/Φτ T = Φµ/Φtot R = Φe/Φτ

1 : 2 : 0 0.323 ÷ 0.389 0.818 ÷ 1.476 0.333 1.000

1 : 1.90 : 0.001 0.321 ÷ 0.386 0.834 ÷ 1.493 0.331 1.017

1 : 1.85 : 0.001 0.321 ÷ 0.384 0.842 ÷ 1.503 0.330 1.026

1 : 1.80 : 0.001 0.320 ÷ 0.382 0.850 ÷ 1.513 0.329 1.036

Table 1: Pion sources: ranges of the ratios T = Φµ/Φtot and R = Φe/Φτ for the current 3σ ranges

of the oscillation parameters. We used different flux compositions, pure 1 : 2 : 0 and different

impure cases. The values for tribimaximal mixing are also given.

general case TBM

composition T = Φµ/Φtot R = Φe/Φτ T = Φµ/Φtot R = Φe/Φτ

0 : 1 : 0 0.33 ÷ 0.51 0.34 ÷ 1.13 0.39 0.57

0.05 : 1 : 0 0.33 ÷ 0.49 0.40 ÷ 1.17 0.38 0.63

0.1 : 1 : 0 0.33 ÷ 0.48 0.46 ÷ 1.21 0.37 0.68

Table 2: Muon damped sources: ranges of the ratios T = Φµ/Φtot and R = Φe/Φτ for the current

3σ ranges of the oscillation parameters. We used different flux compositions, pure 0 : 1 : 0 and

different impure cases. The values for tribimaximal mixing are also given.

general case TBM

composition T = Φµ/Φtot R = Φe/Φτ T = Φµ/Φtot R = Φe/Φτ

1 : 0 : 0 0.12 ÷ 0.35 1.39 ÷ 5.35 0.22 2.50

1 : 0.05 : 0 0.14 ÷ 0.35 1.35 ÷ 4.73 0.23 2.34

1 : 0.1 : 0 0.16 ÷ 0.35 1.32 ÷ 4.26 0.24 2.21

Table 3: Neutron beam sources: ranges of the ratios T = Φµ/Φtot and R = Φe/Φτ for the current

3σ ranges of the oscillation parameters. We used different flux compositions, pure 1 : 0 : 0 and

different impure cases. The values for tribimaximal mixing are also given.

the next section). R, the ratio of electron to tau neutrinos, is for tribimaximal mixing

1, 4/7 and 5/2, respectively, for the pion, muon-damped, and neutron sources. Hence,

much less precision would be required in order to distinguish the different source types. A

large value of R would indicate a neutron source. However, the correction terms due to

nonzero |Ue3|, ǫ and ǫ′ are seen to have rather large pre-factors, so that again overlap can

be expected. Results with these uncertainties are shown in figure 5. We show in figure 6

the ratio Q of νe to the total flux. Recall that this ratio is important for the νe +e− → W−

reaction in the ∼ 6.3 PeV energy bin. With the Q observable, the neutron source (“cosmic

β-beam”) is clearly differentiated from the other source types. An interesting proposal [28]

6Alternatively, the same statements apply to the ratio Φµ/(Φe + Φτ ), which is 1/2, 7/11 ≃ 0.64 and

2/7 ≃ 0.29.
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Figure 4: The minimal and maximal values of the ratio T of muon neutrinos to the total flux,

obtained by varying oscillation parameters within their 3σ ranges. The horizontal axis labels

deviations (ζ or η) from the idealized flux compositions, parameterized as 1 : 2 (1 − ζ) : 0 for

pion sources, η : 1 : 0 for muon-damped sources, and 1 : η : 0 for neutron beam sources.
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Figure 5: Same as previous figure for the ratio R of electron to tau neutrinos.

is that a measurement of Q as the ratio of the resonant νe + e− → W− 6.3 PeV bin to

any off-resonance bin can differentiate between two nuances of the pion source, namely pp

and pγ beam dumps. The latter has no νe’s at production. Figure 6, in which neutrino

luminosities are assumed equal for all source types, reveals that pp and pγ are in principle

distinguishable. In fact, it has been argued that the neutrino luminosity from pp is larger

than that from pγ by a factor ∼ 2.4 (see [28] and references therein). This implies a better

statistical determination of Q with the pp origin, and an additional signal for discriminating

– 14 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
5

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

Φ
e
/ 

Φ
to

t

pγ
pp
muon-damped
neutron

Figure 6: Same as previous figure for the ratio Q of νe to all neutrinos.

pp and pγ. On the other hand, the muon-damped source also scales with this 2.4 factor,

potentially confusing the discrimination between pp and pγ sources. Also, it has been noted

that the γγ → µ+µ− reaction may provide some νe’s in a hot pγ environment [40].

We note that for pion sources the ratios depend very little on θ12. For the other sources,

the dependence is stronger, as (unlike for pion sources) in the limit of ǫ = Ue3 = 0 the ratios

depend on θ12. In general, however, for equal deviations from the tribimaximal values, the

dependence on θ12 is weaker than the dependences on θ23 and |Ue3| cos δ. Nevertheless, we

note that schematically one may write

Ratio(pion) = c0 + c1 ∆ + c2 ∆
2

, (2.28)

Ratio(muon-damped) = f0(θ12) + f1(θ12)∆ + f2(θ12)∆
2

,

Ratio(neutron) = g0(θ12) + g1(θ12)∆ .

The zeroth order expression for pion sources does not depend on θ12. In addition, typically

we have that the magnitude of c0/c1,2 is larger than the magnitudes of f0(θ12)/f1,2(θ12)

and g0(θ12)/g1,2(θ12). For instance, for the ratio T , we find from the above that |c0/c1| =

|c0/c2| = 1, whereas |f0/f1| = |f0/f2| = 1
2 (1 − c2

12 s2
12) ≃ 7/18 and |g0/g1| = c2

12 s2
12 ≃ 2/9.

Therefore, the ratios for muon-damped and neutron sources are significantly more sensitive

to ∆ (and ∆
2
), and thus on deviations from vanishing Ue3 and maximal θ23. This simple

fact is the reason that flux ratios of muon-damped and neutron beam sources are better

suited to probe such deviations. Noting further that ∆ and ∆
2

depend strongly on θ23, we

can expect that neutrino telescopes will be most sensitive to the θ23 parameter.

3. Uncertainties in initial flavor composition

Up to this point we have obtained expressions for the flux ratios in the cases of exact initial

flavor composition. However, as indicated in the Introduction, one expects on general
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grounds some deviations from the idealized 1 : 2 : 0 (pion source), 0 : 1 : 0 (muon-damped

source), or 1 : 0 : 0 (neutron source) flavor ratios. The implications of non-idealized source

ratios, on the extraction of the neutrino mixing parameters, have not been previously

studied in detail. In this section, we will first estimate the amount of “impurity” in the

initial flux compositions. After that, we will discuss some examples leading to incorrect

inferences if care is not taken.

3.1 Estimating realistic flavor-flux compositions

When the source of neutrinos is a hadronic beam dump which produces pions and

consequently neutrinos from π → µ νµ → e νµ νµ νe, the pion decay chain, naive counting

gives a flux ratio for νe to νµ of 1 : 2 and no ντ . However, the “wrong-helicity” muon

polarization from pion decay makes the νµ from its decay softer, thus reducing the effective

νµ count. For a canonical spectral index of α = 2, the predicted initial flavor ratio is

1 : 1.86 (see the detailed discussion in ref. [34]). In addition, the production and decay

of kaons also produces neutrinos. The kaon decay modes which produce charged pions in

the final state (e.g., KS → 2π, K± → 2π, KL → 3π) give rise to the same ratio of 1 : 1.86.

We now extend the analysis of ref. [34] to include leptonic and semi-leptonic K decays,

and production and decay of heavy flavors. The appreciable K± → µ±+
(−)
νµ chain and the

three-body semi-leptonic decay modes of K± and especially KL also produce neutrinos.

The K± → µ±+
(−)
νµ chain has a νe : νµ ratio of 1 : 2.8 and the KL semi-leptonic decays give

a ratio of 1 : 0.75. We use a K/π ratio of 0.15 in our estimates, although the dependence

on this ratio is rather weak. When all the modes are added to the pion chain neutrinos,

and all the branching ratios and neutrino energy spectra are taken into account (following

the methods described in [34]), the final flavor mix ends up being surprisingly close to

the value 1 : 1.86, which was obtained by including only the pion chain. Finally, at high

energies, production of the heavy flavors c and b is expected. The semi-leptonic decay of

these heavy flavors gives rise to so-called “prompt” neutrinos, characterized by the flux

ratio for νe : νµ of 1 : 1. There is also a small flux of ντ from the decay mode Ds → τ ντ ,

which has a branching ratio of about 6%. Bottom quark decays also produce some ντ , but

b-production is down compared to c-production by a factor of about 30.

After taking all cross-sections, decaying species, branching ratios, and neutrino energy

distributions into account, our final estimate of the corrected flavor mix is

Φ0
e : Φ0

µ : Φ0
τ = 1.00 : 1.852 : 0.001 . (3.1)

Remarkably, the νe : νµ ratio remains very close to the original ratio 1 : 1.86 due to

just pion decay. Notice that the ντ content is a negligible 0.1% at most. The main source

of uncertainty in our estimate is the spectral index at injection, α. Figure 3 of ref. [34]

shows that the ratio 1 : 1.86 is modified by a few percent to 1 : 1.9 if α = 1.7, and to 1 : 1.8

if α = 2.3.

We quantify the deviations with the single parameter ζ:

Φ0
e : Φ0

µ : Φ0
τ = 1 : 2 (1 − ζ) : 0 , (3.2)
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and we can expect ζ to be ∼ 0.1. The ratio 1 : 1.86 for electron to muon neutrinos

corresponds to ζ = 0.07.

Damped muon sources result when muon energy loss mechanisms are operative. The

effects of muon energy loss for the flavor mix have been discussed by a number of au-

thors [29 – 34, 14] for a number of sources (such as gamma ray bursts), and models (such

as Waxman-Bahcall type). From refs. [31, 34, 14] one can draw two general conclusions:

first, the onset of muon-damping happens abruptly in energy. In ref. [14], the onset is

within a factor of 2 to 3 of 108 GeV. Second, the νe flux may be severely suppressed, but

it never goes to zero. It never falls below 4% in ref. [14], and never below 2% in ref. [34].

Consequently, we parameterize the initial muon-damped sources as (η : 1 : 0), where η is

at least a few percent.

Finally, for the neutron sources a pion pollution of order 10% has been estimated in

ref. [4]. So for the muon-damped and neutron sources, we introduce the single parameter

η and use for the initial flux ratios

Φ0
e : Φ0

µ : Φ0
τ = η : 1 : 0 (muon-damped) , and 1 : η : 0 (neutron) . (3.3)

For typical values of ζ and η, we show in tables 1, 2 and 3 the ranges of the flux

ratios under consideration. The oscillation parameters are varied in their currently allowed

3σ ranges. Results for pion sources are the most stable. We also give in the tables the

values of the flux ratios if the neutrino parameters are fixed to their tribimaximal values.

One concludes that impure initial flux compositions should be taken into account when

discussing the prospects of inferring neutrino parameters with flux ratio measurements.

It is worth mentioning that another possible source of deviations from idealized flux

ratios is new physics. For example, 3 + 2 sterile neutrino scenarios [41, 42] (still allowed

even after the MiniBooNE results [43]), can cause deviations of the flux ratios of order 10%,

thereby interfering with the program of inferring deviations from three-flavor tribimaximal

mixing [44, 42].

We note that a different parameterization for the initial flavor ratios is given

in ref. [6]. There the unit normalization of the sum of the flavor ratios is em-

phasized by introducing two polar angles for the vector on the unit sphere,

Φe : Φµ : Φτ = sin2 ξ cos2 ζ : cos2 ξ cos2 ζ : sin2 ζ. Although this parameterization

(the angular ζ-parameter of ref. [6] is not to be confused with our small ζ-parameter

defined in eq. (3.2)) and ours are equivalent, ours does have the advantage that the

introduced parameters in eqs. (3.2) and (3.3) are small, thereby allowing the perturbative

expansions we present in the next subsections. Also, the focuses in ref. [6] and in our

work are different. The former emphasizes determination of the initial flux composition,

i.e., determining ξ and ζ, when the neutrino mixing parameters are known with sufficient

precision. In our work we include the influence of uncertainties from both the initial fluxes

and the neutrino mixing parameters upon the experimental program, with particular

attention paid to the consequences for extraction of precise neutrino parameters.

3.2 Parameterized pion sources

Justifiably neglecting the ντ contribution, the initial flux composition from pion sources is
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Φ0
e : Φ0

µ : Φ0
τ = 1 : 2 (1 − ζ) : 0. In the limit of ζ = 0, we recover the ratios of section 2.2.

The detectable fluxes behave according to

Φe ∝ Pee + 2 (1 − ζ)Peµ = 1 − 2 ζ c2
12 s2

12 + 2∆ (1 − ζ) − 2 ζ (1 − 2 c2
12 s2

12) |Ue3|2 ,

Φµ ∝ Peµ + 2 (1 − ζ)Pµµ = 1 − ∆ − ζ (1 − c2
12 s2

12) + ∆
2
+ 2 ζ ∆ + ζ (1 − 2 c2

12 s2
12) |Ue3|2 ,

Φτ ∝ Peτ + 2 (1 − ζ)Pµτ = 1 − ∆ − ζ (1 − c2
12 s2

12) − ∆
2
+ ζ (1 − 2 c2

12 s2
12) |Ue3|2 ,

plus cubic terms in the small parameters. With the alternate (A, B, C) expansion, we have

Φe ∝ 1 +
B

9
− 2 ζ (4 − 2A + B) ,

Φµ ∝ 1 − B

18
+

C

9
− 2 ζ (7 + A − B + C) , (3.4)

Φτ ∝ 1 − B

18
− C

9
− 2 ζ (7 + A − C) .

We show in figure 4 the allowed range of the ratio T for pion sources as a function of ζ,

while figure 5 shows the same for R, and figure 6 the same for Q. The largest effect is

seen in the ratio Q, in the case of a pγ neutrino source.

Impure sources will still lead to deviations from “pure” values of the flux ratios, even

if neutrino mixing is exactly tribimaximal:

TTBM =
9 − 7 ζ

27 − 18 ζ
≃ 1

3

(

1 − ζ

9

)

and RTBM =
9 − 4 ζ

9 − 7 ζ
≃ 1 +

ζ

3
. (3.5)

The deviation is seen to be stronger in RTBM.

Possible nonzero θ13 and non-maximal θ23 may be compensated by the “impurity

factor” ζ. The flux ratio Φe/Φtot illustrates this “confusion”. From eq. (2.23) we know

that for ζ = 0 the ratio is given by 1
3(1 + 2∆). From eq. (3.4), it is (neglecting the very

small single terms depending on |Ue3|2) easily obtained that a nonzero ∆ is compensated

by an initial flux uncertainty if the following relation holds:

ζ = − 3∆

1 − 3 c2
12 s2

12

≃ −9∆ . (3.6)

This value of uncertainty returns the ratio to the value 1
3 , even though ∆ 6= 0. The ratio

of muon and tau neutrino fluxes provides another example. Compensation occurs if

ζ = − ∆

∆
2 . (3.7)

In figure 7 we show the distribution of |Ue3| cos δ against sin2 θ23 if the flux ratio T is

measured to be 1
3 and 0.35. We choose a pure source with 1 : 2 : 0 and three different

impure sources motivated by our estimates in section 3.1. Figure 8 shows the same for

R = 1 and R = 1.1. It is obvious that the covered area in parameter space changes

considerably when the flux composition is varied. Table 1 gives the numerical values of

the ranges. Though the upper and lower limits are barely modified by varying ζ, there

are easily situations in which nonzero ζ is dramatic. For example, if T was measured to
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Figure 7: Distribution of |Ue3| cos δ against sin2 θ23 if the flux ratio Φµ/Φtot is measured to be
1

3
(top) and 0.35 (bottom), for different initial flavor compositions. The red circles are for pure

1 : 2 : 0, the magenta crosses are for 1 : 1.90 : 0.001, the blue squares are for 1 : 1.85 : 0.001 and

the green diamonds are for 1 : 1.80 : 0.001. Indicated also is the allowed 1σ range of θ23 and of

|Ue3| cos δ for (from top to bottom above zero) δ = 0, δ = π/4 and δ = π/3. The value δ = π/2

means |Ue3| cos δ = 0.

be 1
3 and it was known that sin2 θ23 = 1

2 , then one would infer for an ideal pion source

that |Ue3| cos δ = 0. If in addition |Ue3| was known to be nonzero, then δ would be π/2

and CP-violation would be inferred. However, if instead, the true value is ζ = 0.1, then

|Ue3| cos δ ≃ 0.06 would hold, and if |Ue3| was known to be 0.06 then CP may or may not

be broken.

The simple examples given here show that care has to be taken when conclusions about

neutrino mixing parameters are drawn from flux ratio measurements.
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Figure 8: Same as previous figure for the flux ratio Φe/Φτ assumed to be 1 (top) and 1.1 (bottom).

3.3 Parameterized muon-damped sources

Here we investigate the impact of the non-idealized initial muon-damped source ratios

Φ0
e : Φ0

µ : Φ0
τ = η : 1 : 0. Figures 4, 5 and 6 show the minimal and maximal values of the

ratios T , R and Q. In general, the dependence on initial flavor deviations is larger here

than it was with pion sources. The fluxes behave according to

Φe ∝ Peµ + η Pee =
1

18
(4 − 2A + B + 2 η (5 + 2A)) ,

Φµ ∝ Pµµ + η Peµ =
1

18
(7 + A − B + C + η (4 − 2A + B)) , (3.8)

Φτ ∝ Pµτ + η Peτ =
1

18
(7 + A − C + η (4 − 2A − B)) .

Table 2 shows the numerical effect of η 6= 0 for neutrino fluxes from muon-damped sources.

– 20 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
5

0.35 0.4 0.45 0.5 0.55 0.6

sin
2 θ

23

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

|U
e
3
| 
c
o

s 
δ

η = 0
η = 0.1

0.35 0.4 0.45 0.5 0.55 0.6

sin
2 θ

23

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

|U
e
3
| 
c
o

s 
δ

η = 0
η = 0.1

Figure 9: Distribution of |Ue3| cos δ against sin2 θ23 if the flux ratio Φµ/Φtot is measured to be

7/18 (top) and 0.42 (bottom); the initial flavor mix is η : 1 : 0, and sin2 θ12 = 1

3
is assumed.

Comparing with table 1 for pion sources, one sees that the effect of source uncertainty is

larger for muon-damped sources compared to pion sources.

If neutrinos mix tribimaximally, then

TTBM =
1

18

7 + 4 η

1 + η
≃ 1

18
(7 − 3 η) and RTBM =

4 + 10 η

7 + 4 η
≃ 1

7

(

4 +
54

7
η

)

. (3.9)

As with pion sources, the parameter dependence is stronger for RTBM than TTBM. Figure 9

displays the distribution of |Ue3| cos δ against sin2 θ23, taking T to be 7/18 and 0.42, and for

simplicity, fixing sin2 θ12 = 1
3 . For the two chosen values of η = 0 and 0.1, the allowed areas

do not meet, which shows again that the sensitivity on impure initial fluxes is stronger for

muon-damped than for pion sources. Moreover, the dependence on the actual value of the
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Figure 10: Same as previous figure for the ratio of electron to tau neutrinos measured to be 7/18

(top) and 0.7 (bottom).

ratio T is weaker than the dependence on ζ. In figure 10 we show correlated dependences,

fixing the ratio R to be 4/7 and 0.7.

Let us discuss a hypothetical but illustrative example. If all neutrino parameters but

δ were known exactly, and if T were measured without any uncertainty, then the value of

cos δ can be extracted [4, 13]. In figure 11 we display this possibility, taking optimistic

values of the other parameters. We assume a large value of θ13 and maximal θ23 in order to

maximize the dependence on cos δ. Suppose now that T = 0.397 were measured. Assuming

that η = 0, i.e., a very pure muon-damped source, one would conclude that cos δ = −0.5,

thereby inferring leptonic CP-violation. However, if in reality η = 0.1, then the same

Tµ = 0.397 value would instead mean that cos δ = −1 and CP is conserved.

Let us present another example using figure 12. In figure 12 the dependence of T on
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Figure 11: Extracted value of cos δ from an exact measurement of the ratio T of muon neutrinos

to the total flux for an initial flux composition η : 1 : 0. The oscillation parameters are fixed to

θ23 = π/4, sin2 θ12 = 1

3
, and |Ue3| = 0.15.
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Figure 12: Dependence on sin2 θ23 of the ratio of muon neutrinos to the total flux. The red

lines are for 0 : 1 : 0, while the green lines below are for 0.1 : 1 : 0. We have chosen δ = π and

sin2 θ12 = 1

3
.
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sin2 θ23 [5] is shown, for two values of |Ue3| and for η = 0 and 0.1. The nonzero η introduces

a few percent uncertainty in the flux ratio, especially for sin2 θ23 ≥ 0.5. In general, the

ratio decreases. The curves for different |Ue3| do not meet when η = 0; however, for

η = 0.1 they cross each other, thereby destroying the possibility to disentangle the two

chosen values of |Ue3|.

3.4 Parameterized neutron beam source

Finally we come to the impact of an initial β-beam source which may not be pure, i.e.,

Φ0
e : Φ0

µ : Φ0
τ = 1 : η : 0. In this case the flux ratios at Earth are given by

Φe ∝ Pee + η Peµ =
1

18
(10 + 4A + η (4 − 2A + B)) ,

Φµ ∝ Peµ + η Pµµ =
1

18
(4 − 2A + B + η (7 + A − B + C)) , (3.10)

Φτ ∝ Peτ + η Pµτ =
1

18
(4 − 2A − B + η (7 + A − C)) .

The tribimaximal values for oscillation parameters leads to

TTBM =
1

18

4 + 7 η

1 + η
≃ 1

9

(

2 +
3

2
η

)

and RTBM =
10 + 4 η

4 + 7 η
≃ 5

2

(

1 − 27

20
η

)

. (3.11)

More generally, we show in figures 4, 5 and 6 the minimal and maximal values of the ratios

T , R and Q (flux composition νe : νe : νµ : νµ : ντ : ντ = 0 : 1 : η/2 : η/2 : 0 : 0) that result

when the oscillation parameters are allowed to vary over their 3σ ranges. As was the case

with muon-damped sources, deviations from pure flux compositions have more impact on

neutron sources than on pion sources. And again, the dependence on the actual value of

the ratio T or R is weaker than the dependence on ζ. Table 3 confirms these remarks.

In figures 13 and 14 the distributions of |Ue3| cos δ against sin2 θ23 for two characteristic

values of T (2/9 and 0.26) and R (5/2 and 2) are given.

Recall that ∆ but not ∆
2

appears in the flux ratios for neutron sources. This makes

it possible to give a simple formula for the special case where the effect of nonzero ∆ is

exactly compensated by a nonzero η. If

η = 2
∆ + (1 − 2 c2

12 s2
12) |Ue3|2

1 − 3 c2
12 s2

12

≃ 6

(

∆ +
5

9
|Ue3|2

)

, (3.12)

then the tribimaximal value T = c2
12 s2

12 necessarily results. We give in figure 15 an example

of the dependence of T on |Ue3| and θ23. It can be seen that impure initial flux compositions

can influence statements on the octant of θ23. For instance, measuring T = 0.2 would rule

out sin2 θ23 > 0.5 only if η = 0. However, if η = 0.1, then T = 0.2 is compatible with

sin2 θ23 = 0.55, and the octant of θ23 is different from the one inferred if η = 0.

4. Summary and conclusions

We have considered in this paper neutrino mixing and flux ratios of astrophysical neutrinos.

We first have expanded the expressions in terms of small parameters ǫ = π/4 − θ23 and
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Figure 13: Distribution of |Ue3| cos δ against sin2 θ23 if the flux ratio Φµ/Φtot is measured to be

2/9 (top) and 0.26 (bottom), for an initial flavor mix of 1 : η : 0.

|Ue3|, while leaving θ12 free. The small parameters ǫ and ℜ{Ue3} measure the symmetry

breaking of νµ ↔ ντ interchange symmetry. With this expansion, we showed that the first

and second order corrections which characterize the deviations from µ–τ symmetry, ∆ and

∆
2
, appear universally. The universal corrections ∆ and ∆

2
are given in eqs. (2.6), (2.7).

Each can take values as large as 0.1. Compact results for the mixing probabilities, in terms

of ∆ and ∆
2
, are shown in eqs. (2.5), (2.9).

The second order term ∆
2

appears only in the µ–τ sector (therefore it is not relevant

for flux ratios from neutron beam sources) and is positive semidefinite. Because it can

exceed the first order term, it is necessary to include it in analytical considerations. It

vanishes only for ǫ = |Ue3| cos δ = 0, whereas the first order term can vanish also for

nonzero values of ǫ and |Ue3|.
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Figure 14: Same as previous figure for the ratio of electron to tau neutrinos measured to be 5/2

(top) and 2 (bottom).

In general, if the initial flavor mix is exactly 1 : 2 : 0, then neutrino mixing transforms

these ratios to (Φe : Φµ : Φτ ) = (1 + 2∆) :
(

1 − ∆ + ∆
2
)

:
(

1 − ∆ − ∆
2
)

. Hence, there

are always more muon than tau neutrinos upon arrival at Earth. The ratio of muon

neutrinos to all neutrinos can deviate by more than 15% from the tribimaximal value 1
3 ,

while the ratio of electron to tau neutrinos can deviate by up to 50% from the tribimaximal

value 1.

As the solar neutrino mixing parameter sin2 θ12 is close to the tribimaximal value 1
3 ,

we next included ǫ′ = arcsin
√

1
3 − θ12 in our set of expansion parameters. With this

expansion set, three universal corrections A, B and C, defined in [37] and reproduced

here in eq. (2.15), characterize the deviations from tribimaximal mixing. Very concise
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for 1 : 0 : 0, while the green lines above are for 1 : 0.1 : 0. We have chosen δ = π and sin2 θ12 = 1

3
.

expressions for the mixing probabilities result [37], as seen in eqs. (2.14).

In the second part of this paper, we investigated the purity of initial neutrino-flavor

ratios expected from three types of astrophysical sources. The initial flavor ratios commonly

considered in the literature are

(i) pion sources (with a complete pion decay chain), having initial ratios 1 : 2 : 0;

(ii) muon-damped sources (initial pions but an incomplete decay chain), having initial

ratios 0 : 1 : 0;

(iii) neutron beam sources (so-called “cosmic β-beams”), with initial neutrino flavor ratios

1 : 0 : 0.

The idealized flavor ratios of all three source types are subject to small but important cor-

rections. We investigated the effects of realistic corrections on the extraction of neutrino

parameters from measurements of flux ratios. We found that the muon-damped and neu-

tron beam sources are more sensitive to initial flavor deviations than is the pion source. In

addition, the muon-damped and neutron beam sources are also more sensitive to deviations

of oscillation parameters θ23 and Ue3 from π/4 and zero, respectively. These sensitivities

can be easily seen by considering the ratio T of muon neutrinos to the total flux. For

sin2 θ12 = 1
3 , this ratio reads

T =
Φµ

Φtot
≃











1
3

(

1 − ∆ + ∆
2 − 1

9 ζ
)

, pion source (1 : 2 (1 − ζ) : 0) ,

7
18 − ∆ + 1

2 ∆
2 − 1

6 η , muon-damped source (η : 1 : 0) ,
2
9 + ∆ + 1

6 η , neutron beam source (1 : η : 0) ,
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where the parameterized initial flavor-ratios are 1 : 2 (1 − ζ) : 0, η : 1 : 0 and

1 : η : 0, respectively. For pion sources, the zeroth order expression is T = 1
3 , and with

|∆, ∆
2
, ζ, η| <∼ 0.1, deviations can be up to 15% for oscillation-induced effects and of

order 1% for impure flavor mixes. For muon-damped sources, on the other hand, the effect

of uncertain oscillation parameters is up to 30%, and the effect of nonzero η is more than

5%. The effect on neutron beam sources may be even more dramatic: the observable T

can change by more than 50% due to deviations from tribimaximality, and by order 10%

due to impurities. We have also considered the ratio R of electron to tau neutrinos, which

in the same sin2 θ12 = 1/3 limit reads

R =
Φe

Φτ
≃











1 + 3∆ + ∆
2
+ ζ

3 , pion source (1 : 2 (1 − ζ) : 0) ,
4
7

(

1 + 18∆ + 36
7 ∆

2
+ 54

7 η
)

, muon-damped source (η : 1 : 0) ,
5
2

(

1 + 9
2 ∆ − 27

20 η
)

, neutron beam source (1 : η : 0) .

The magnitude of coefficients reveal that the effects of nonzero ∆, ∆
2
, ζ or η is in general

stronger on R than on T . To be more quantitative (see tables 1, 2, 3), oscillation effects

are up to 50% for pion sources and almost a factor of two for muon-damped and neutron

sources. Impurities in the initial flux composition of 0.1 lead to deviations in the flux

ratios of 4%, 20% and 15% for pion, muon-damped and neutron sources, respectively.

We gave several illustrative examples where the assumption of an idealized, pure initial

flux ratio may easily (mis)lead to incorrect inferences. Wrong inferences may include the

octant of θ23, the magnitude of |Ue3| and the existence of leptonic CP-violation. We stress

that in future analyses, the intrinsic flux uncertainty should be taken into account before

inferences are drawn.
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A. Mixing probabilities

For the sake of completeness, we give here the explicit forms of the oscillation probabilities.

The lepton mixing, or PMNS, matrix is parameterized in Particle Data Group format as

U =







c12 c13 s12 c13 s13 e−iδ

−s12 c23 − c12 s23 s13 eiδ c12 c23 − s12 s23 s13 eiδ s23 c13

s12 s23 − c12 c23 s13 eiδ −c12 s23 − s12 c23 s13 eiδ c23 c13






, (A.1)
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where cij = cos θij, sij = sin θij, and we have omitted the Majorana phases, which are

irrelevant for neutrino oscillations. Using eq. (2.1), one obtains

Peµ = 2 c2
13

{

c2
12 s2

12 c2
23 +

(

c4
12 + s2

12

)

s2
13 s2

23 (A.2)

+c12 s12 c23 s23 cδ (c2
12 − s2

12) s13

}

,

where cδ = cos δ, and

Pµµ = 1 − 2 c4
12 c2

23 s2
23 s2

13 (A.3)

+2
{(

s2
12

[(

s4
13 +

[

4 c2
δ − 1

]

s2
13 + 1

)

s2
23 − 1

]

− c2
13 s2

23

)

c2
23

+s2
13 s2

23

(

c2
13 s2

12 −
[

c2
13 + s2

12

]

s2
23

)]

c2
12

+s23

[

−2
(

c2
23 c4

13 +
[

c2
13 + c2

23 s2
12

]

s2
13

)

s23 s2
12

−2 c12 s12 c23 cδ (c2
12 − s2

12)
(

c2
13 +

[

s2
13 + 1

]

[c2
23 − s2

23]
)

s13

}

.

With the help of the identities [45, 11]

Peτ = Peµ(θ23 → θ23 + π/2 or θ23 → θ23 + 3π/2) ,

Pττ = Pµµ(θ23 → θ23 + π/2 or θ23 → θ23 + 3π/2) ,
(A.4)

and the unitary relations

Pee = 1 − Peµ − Peτ , (A.5)

Pµτ = 1 − Peµ − Pµµ , (A.6)

Pττ = 1 − Peτ − Pµτ = Pee + 2Peµ + Pµµ − 1 = Peµ − Peτ + Pµµ , (A.7)

all other probabilities can be readily obtained.
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